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Abstract—The World Health Organisation reports distracted
driving actions as the main cause of road traffic accidents.
Current studies to detect distraction postures focus on analysing
spatial features of images using Convolutional Neural Networks
(CNN). However, approaches addressing both spectral and spatial
features of images for driving distraction are scarce. Our hypoth-
esis is that deep learning approaches can further be exploited
to consider spatial and spectral features, so that the spatial
features capture the spatial information within the image and
the spectral features capture the spectral correlations among the
image channels. This paper introduces a novel driver distraction
posture detection method using CNNs and stacked Bidirectional
Long Short Term Memory (BiLSTM) Networks to capture the
spectral-spatio features of the images. The proposed methodology
consists of two stages: first, we automatically learn the spatial
posture features using pre-trained CNNs. Subsequently, we utilise
BiLSTMs architecture to extract the spectral features amongst
the stacked feature maps from the pre-trained CNNs. Our
proposed approach is evaluated on the American University in
Cairo (AUC) Distracted Driver Dataset, the most comprehensive
and detailed dataset on driver distraction postures to date.
Results show that our approach beats state-of-the-art CNN
models with an average classification accuracy of 92.7%.

Index Terms—Deep learning, image classification, driving dis-
traction postures, Neural Networks, Spatial features, Road traffic
incidents, Spectral features

I. INTRODUCTION

The World Health Organisation (WHO) reported 1.35 mil-
lion deaths in 2018 due to road traffic accidents worldwide.
The WHO report attributes the main causes to violations
and distractions, such as over-speeding, harsh cornering, day-
dreaming, cell phone usage and looking at something outside
the car. In an attempt to mitigate this problem, researchers have
explored the use of artificial intelligence to understand risky
driving behaviours and to develop driver assistance and alert
systems [1], [2]. However, the number of road traffic deaths
has been continuously increasing over the last few years [3]

With the dramatic increase in computational power, deep
neural networks have demonstrated impressive performance
in automatically extracting image features for computer vision
tasks, such as image classification [4], [5] and object detec-
tion [6]–[8]. This has caused a shift in image analysis from
hand-crafted feature learning (where features are manually de-
rived using expert knowledge) to deep learning. Deep learning
models, specifically Convolutional Neural Networks (CNNs),
automatically learn spatial features from images by generating
feature maps using sliding windows (i.e., kernels) and filters.
Current studies in detecting distraction postures have explored

different variations of CNNs to extract the spatial information
from images for the classification of driving postures, with
promising results. However, some distractions are still very
difficult to classify due to their spatial similarities with other
postures. Such postures may only be accurately detected by
analysing their spectral features, which provide additional
information about the images.

In this paper, we propose a deep learning architecture
that outperforms current state-of-the-art CNN models when
classifying distracted driving postures using static images. Our
model consists of concatenated CNN and BiLSTM networks.
The CNN networks automatically learn the spatial features of
the images and the LSTMs extract the spectral correlations
among the feature maps produced by the CNNs. With the
spectral and spatial features extracted, our model accurately
identifies postures in the AUC Distracted Driver Dataset [9],
[10], which is the most comprehensive and detailed publicly
available driver distraction dataset.

This paper is organised as follows, in Section II we review
the literature on driver distraction detection using deep learn-
ing techniques and provide an overview of CNNs and LSTMs
architectures. Subsequently, we describe our methodology in
Section III. In Section IV, we introduce the publicly available
driver distracted dataset, describe hyperparameter optimisation
of our model and the evaluation protocol. In Section V, the
results are presented along with discussion, and Section VI
concludes the paper and establishes the opportunity for future
work.

II. BACKGROUND

A. Related Work

Recent studies on driver distraction detection use deep
learning methods, which have proven to outperform traditional
machine learning techniques. Kim et al. [11] proposed a
method of detecting driver distraction using RestNet and
MobileNet CNN models. However, their study only focused on
two types of distraction: looking in-front and not looking in-
front postures. Their results on training the models using fine-
tuned pre-trained models significantly outperformed training
the models from scratch.

Similarly, Yan et al. [12] examined CNNs to detect driver
distraction postures. The authors first pre-trained their model
using an unsupervised feature learning method called sparse
filtering, and subsequently fine-tuned with CNNs for classi-
fication. Their model was evaluated on three datasets: the



Southeast University Driving Posture dataset, and two datasets
developed by the authors called Driving-Posture-atNight and
Driving-Posture-inReal datasets. The authors claimed that
the Driving-Posture-atNight dataset has 29,410 images and
Driving-Posture-inReal dataset has 17,730 images. Results
showed high classification accuracy with the three driving pos-
ture datasets which outperformed methods using hand-crafted
features. However, their datasets have only four distraction
postures and are not publicly available for benchmarking.

Furthermore, Majdi et al. [13] employ CNNs for detecting
driver distraction postures. The authors adopted the U-Net
CNN architecture for capturing context around the objects.
Their model was trained on the American University in
Cairo (AUC) Distracted Driver dataset. Their results show
great improvement in accuracy compared to Support Vector
Classifiers and other CNN architectures. Likewise, Eraqi et
al. [9] propose a weighted ensemble of CNNs using four
different CNN architectures (i.e AlexNet network [14], In-
ceptionV3 [15] networks, ResNet networks [16], and VGG-
16 networks [17]). The CNNs are trained on five different
image sources of the AUC distracted driver dataset i.e. raw
images, skin-segmented images, face images, hands images,
and face and hands images. The results from the individual
CNNs show the best accuracy when trained on the raw images.
Subsequently, the predictions from the different CNNs are
combined using a weighted Genetic Algorithm (GA) and the
results from the fusion show improved accuracy compared to
the independent CNNs and majority voting fusion. However,
training these CNNs is extremely costly with large number of
parameters: VGG16 , AlexNet , ResNet50, and InceptionV3
models have 134.3 million, 58.3 million, 25.5 million, and
24.3 million parameters respectively.

The studies reviewed above employ different variations of
CNNs to identify driver distraction postures. Their limitations
regard: (1) the lack of spectral features that capture the corre-
lations among the feature maps; (2) the lack of well-defined
objectives as the studies simply evaluate several state-of-the-
art CNN models for image classification and select the best
performing model. We address these limitations by proposing
a concatenated CNN-BiLSTM architecture, where we train
only the last few layers of the pre-trained CNN to capture
the more specific spatial features of distracted driving and
use stacked BiLSTMs for extracting the spectral correlations
within the feature maps. Our methodology is motivated by
the state-of-the-art performance of LSTMs in hyper-spectral
image classification [18], where LSTMs are used to capture
correlations among the spectral channels of static images.
The authors’ hybrid architecture outperformed state-of-the-
art CNNs models including the popular 3D-CNN [19] in
classifying hyper-spectral images.

B. Overview of CNNs and LSTMs

1) Convolutional Neural Networks: CNNs [20] are neural
networks consisting of filtering (or convolution), pooling and
activation layers. The inputs go through the convolution layer,
where they are filtered to produce stacked smaller dimen-

sional features (feature maps). The stacked feature maps go
through the pooling layer, which downsamples the input rep-
resentations using a sample-based discretisation process.The
activation layer later converts the stacked downsampled data
into specific features depending on the activation function
that is used (e.g. Rectified Linear Unit (ReLU) converts all
negative values to zero and maintains all positive values).
These filtering, pooling and activation layers allow CNNs to
learn hierarchical discriminative features.

Fig. 1 presents a simple CNN architecture with one convolu-
tion, one pooling and one activation layer. Most state-of-the-art
CNN models [14]–[17] consist of a concatenation of many of
such layers with additional units for Batch normalisation and
regularisation.

Fig. 1. A simple CNN architecture consisting of convolution, pooling and
activation layers

2) Long Short Term Memory Networks: LSTMs [21], [22]
are a type of recurrent neural network capable of learning
short and long-term dependencies in the data (i.e. connecting
previous information to the present task). LSTMs consist of
several recurrent neural network layers interacting to produce
three core gate layers: forget, input, and output gate layers.
The input gate controls which state is updated. The forget
gate controls how much information needs to be retained or
forgotten, and the output gate decides which part of the cell
state is outputted to the next LSTM unit. These gates control
information flow into and out of the LSTM cell unit.

Fig. 2 represents a simple LSTM architecture with three
inputs: the cell state vector of the previous time step (Ct−1),
the hidden state vector (ht−1) of the previous time step, and
the current input vector (Xt).

Fig. 2. LSTM cell unit with forget gates



The interactions between the gate layers in the LSTM unit
is given by the following equations:

ft = sigm(WfXt + Ufht−1 + bf )

it = sigm(WiXt + Uiht−1 + bi)

ot = sigm(WoXt + Uoht−1 + bo)

Ct = ft � Ct−1 + it � tanh(WcXt + Ucht−1 + bc)

ht = ot � tanh(Ct)

Where ft is the forget gate’s activation vector, it is the input
or update gate’s activation vector, and ot is the output gate’s
activation vector. W , U , and b represent the weight matrices
and bias vectors which need to be learned during training.

III. METHODOLOGY

In this section we present our novel deep learning architec-
ture called C-SLSTM for driver distraction posture detection
using CNN and stacked BiLSTMs. C-SLSTM consist of two
stages which are trained together end-to-end. The first stage
consists of CNNs which extract the spatial features from the
posture images and feeds them to the BiLSTMs. The second
stage consists of BiLSTMs that learn the spectral correlations
among the feature maps to predict the driver’s posture. An
overview of our proposed solution is shown in Figure 3. We
describe each stage in detail below.

A. Pre-trained CNN Inception-V3

Training deep CNNs require large labelled datasets and
computational resources, which are not easy to obtain. These
issues can be overcome by using deep CNN which have
been trained on very large databases for similar tasks (i.e.
transfer learning). In this study, we use a pre-trained Inception-
V3 CNN model [23] to capture the spatial information in
distracted postures. We choose Inception-V3 because of its
remarkable performance in image classification and smaller
number of parameters (less than 25M parameters) compared to
other state-of-the-art pretrained CNN models such as Alexnet
and VGGnet.

Inception-V3 is an improved version of Inception [24] with
branching within layers that allows abstraction of features at
different spatial scales. The model has 16 convolution and
mixed layers and a fully connected layer, and is pre-trained on
the ImageNet dataset [25] for image classification. In addition,
the model has 24.3M trainable parameters. We only train the
last 5 layers of the pre-trained network that represent more
detailed spatial information of the image. This reduces the
number of trainable parameters, thereby, reducing the training
cost.

The American University in Cairo (AUC) Distracted Driver
dataset consist of 1080 * 1920 images with 3 spectral bands
or channels. We preprocessed the images into 299 * 299 with
3 channels for the InceptionV3 CNN model. For each image,
the last convolution and mixed layer (known as Mixed 7c)
outputs 8 * 8 feature maps with 2048 channels. We remove

the fully connected layer and output the feature maps as inputs
to the LSTM networks.

B. Stacked Bidirectional Long Short-Term Memory

We use stacked BiLSTMs to learn the spectral features of
driving posture images. The output of the CNNs (i.e., 8 *
8 feature maps with 2048 channels) is fed to the BiLSTMs.
The BiLSTMs extracts the spectral features in the forward
and backward directions by learning the correlations across
the channels of the feature maps. This produces two output
sequences (one for each direction). We use multiple hidden
states to learn the spectral features at deeper spatial scales.
The output sequences of the BiLSTMs are concatenated and
passed to a fully connected layer to classify the images.

IV. EXPERIMENTS

In this section we introduce the AUC distracted driver
dataset used to evaluate our approach. We also describe the
hyperparameters of our model and the evaluation protocol.

A. The American University in Cairo Distracted Driver
Dataset

The AUC Distracted Driver dataset [9], [10] is the largest,
most comprehensive publicly available dataset for driver dis-
traction identification. The dataset captures most real-world
distracted driving postures (up to 10 postures): safe driving
(c0), text right (c1), right phone usage (c2), text left (c3), left
phone usage (c4), adjusting radio (c5), drinking (c6), reaching
behind (c7), hair or makeup (c8), and talking to passenger
(c9). The dataset was captured using an ASUS ZenPhone rear
camera (Model Z00UD), and consists of 1080 * 1920 pixel
images. The dataset contains information for 44 drivers. 38
drivers are used in the training set and 6 drivers in the test
set. Table I shows the number of images in the training and
test sets for each driving posture.

TABLE I
DESCRIPTION OF AUC DISTRACTED DRIVER DATASET

Types of Number of images Number of images
driving postures in training set in test set

c0 2,440 266
c1 1,305 133
c2 862 114
c3 744 100
c4 950 90
c5 753 90
c6 733 63
c7 691 63
c8 698 66
c9 1,379 138

B. Metrics

Table II presents the hyper-parameters for the BiLSTMs.
The optimisation algorithm (optimiser) trains the neural net-
work by minimising the sum of errors between the predicted
values and actual values, i.e. the cost function. The learning
rate controls how the weights are updated with respect to
the estimated error. Dropout is a regularisation technique to



Fig. 3. Our proposed CNN-BiLSTM architecture to detect driving distraction postures

TABLE II
DETAILED CONFIGURATION OF THE BILSTM

Parameters Tested values BiLSTM
Input features 64 64
Hidden size 32, 64, 128 128

Number of layers 1, 2, 3 1
Batch size 16, 32, 64 32
Dropout No, 0.5, 0.6, 0.7 No

Learning rate 0.00001, 0.0001, 0.001 0.0001
Optimizer Adam, SGD Adam

reduce overfitting, where network nodes are dropped during
training. Batch size defines the number of instances to be
propagated (i.e. forward propagation) before updating the
model’s parameters. Number of layers are the number of
LSTM memory cells, and hidden size is the number of hidden
states. The levels of abstraction of features increases over time
proportionally to the hidden states. The input features represent
the size of each feature map (8 * 8).

C. Optimisation

With the range of hyperparameters in Table II, we carried
out experiments using our hybrid model by training and
validating on the AUC distracted driving posture dataset. The
AUC dataset contains a training set (38 drivers) and a test
set (6 drivers) as described in Section IV-A. We split the
training set by driver into new training (80% of the training
set) and validation (20% of the training set) sets. Therefore,
drivers in the training set are not found in the validation and
test sets. The validation data was used to obtain the optimal
hyperparameters. The test set was used to benchmark our
model with the state-of-the-art CNN models discussed in the
literature that used the same datasets and trained variations
of InceptionV3. By evaluating the validation loss of each

hyperparameter, the following optimal hyperparameter values
were obtained: input size = 64, hidden size = 128, number
of layers = 1, batch size = 32, dropout = No, learning rate
= 0.0001, and optimiser = Adam. The experiments were
executed on a graphics processing unit (GPU) using 4 CPU
cores and 6GB RAM. Our code was implemented in Pytorch
with an epoch size of 50 for each experiment.

Due to space constraints, we only present the validation
loss of the optimizers and learning rates as these have great
effect on the learning process of neural networks. Fig. 4.
shows the validation loss when the model is evaluated using
Adam and Stochastic Gradient Descent (SGD) optimizers.
Adam optimizer clearly yields better performance with faster
convergence compared to SGD. Similarly, Fig. 5. shows the
validation loss of the model when evaluated with three learning
rates i.e. 0.00001, 0.0001 and 0.001 . The learning rate of
0.0001 performs better than the rest after 30 epochs.

Fig. 4. Selecting optimisation algorithm



Fig. 5. Selecting learning rate

D. Evaluation

After optimising our model, we evaluated the classification
performance using the average confusion matrix, average
classification accuracy, average precision, average recall and
average F1-score across the different distracted driving pos-
tures after 20 runs.

V. RESULTS AND DISCUSSION

To provide a comprehensive evaluation of performance, we
compare our methodology with the reported results of state-
of-the-art CNN models which have been benchmarked on the
AUC distracted posture dataset (i.e. CNN VGG-16 [9], CNN
Resnet50 [9], and ensemble of InceptionV3 CNNs using Ge-
netic Algorithm (GA) [9]). We also trained and benchmarked
our model with a CNN InceptionV3 and CNN InceptionV3 +
1-directional stacked LSTMs. Table III presents the average
classification accuracy of C-SLSTM on the test split of the
AUC distracted posture dataset after 20 runs with comparison
to state-of-the-art CNN models, CNN InceptionV3 CNN and
CNN InceptionV3 + 1-directional stacked LSTMs.

Our model, C-SLSTM, beats state-of-the-art CNN models
with an average classification accuracy of 92.7% (standard
deviation of 0.94%) and average Negative Log-Likelihood
(NLL) of 0.279 (standard deviation of 0.023) after 20 runs. An
average precision of 92.8% (std = 0.45), recall of 92.7% (std
= 0.46) and f1-score of 92.8% (std = 0.45) was achieved. In
addition, our model significantly outperforms the InceptionV3
CNN model due to its ability to learn the spatial and spectral
features of the images. Also, extracting the correlations be-
tween the channels in the forward and backward directions
(bi-directional) further improves the classification of one-
directional LSTMs from 89.8% to 92.7%.

The confusion matrices of our model and InceptionV3
Genetic Algorithm (GA) are shown in figures. 6 and 7 re-
spectively. We observe that the most misclassified postures by
the InceptionV3 GA model are “reaching behind” (c7) and
“talking to passenger” (c9) with a 19.27% false prediction.
The model appears to mistake “reaching behind” for “talking
to passenger” postures. This is because the driver’s head and
body have the similar spatial positions in both postures, as

TABLE III
DRIVER DISTRACTION CLASSIFICATION RESULTS COMPARED TO

STATE-OF-THE-ART METHODS USING THE AUC ’SPLIT-BY-DRIVER’
DISTRACTED DRIVER TEST DATASET

Model Loss (NLL) Accuracy (%)

VGG-16 [9] 1.2466 76.13

Resnet50 [9] 0.6615 81.69

Ensemble of InceptionV3 0.6400 90.06
with GA-Weighted algorithm [9]

InceptionV3 0.5723 84.41

InceptionV3-LSTM 0.4445 89.82

C-SLSTM 0.2793 92.70

shown in Fig. 8. Our approach, however, distinguishes between
these postures with far more accuracy, reaching 1.5% false
detection. Furthermore, the “talking to passenger” (c9) posture
is the least correctly identified posture in the InceptionV3 GA
model, with an accuracy of 76.6%. This posture is correctly
classified by our model with an accuracy of 92.5%. And the
least identified posture, i.e., “safe driving” (c0) is recognised
by our approach with an accuracy of 86.5%. Lastly, Incep-
tionV3 GA model has overall more false predictions above
5% (i.e. 7 in total) compared to our model, which has only
3 false predictions above 5% (indicated by the grey colour
fillings on the matrices). Therefore, extracting both temporal
and spatial features of images helps to better identify driving
postures than the InceptionV3 GA model and other state-of-
the-art CNN models for the dataset investigated.

Fig. 6. Confusion matrix of C-SLSTM on AUC distracted driving postures
test dataset after 20 runs



Fig. 7. Confusion matrix of ensemble InceptionV3 GA network on AUC
distracted driving postures test dataset depicted from [9]

Fig. 8. Most confusing driving postures for InceptionV3 GA network

VI. CONCLUSIONS AND FUTURE WORK

Distracted driving is one of the major causes of road traf-
fic accidents worldwide. Therefore, monitoring and detecting
driver distraction postures can help in the development of
Advanced Driver-Assistance and alert systems to mitigate the
problem. In this paper, we presented a hybrid deep learning
technique that captures the spatial-spectral features of images
for the classification of distraction postures. Our architecture
outperforms current state-of-the-art CNN models in detecting
distracted driving, with an accuracy of 92.7% when trained and
tested on the publicly-available AUC distracted driver dataset.

For future work, we plan on exploring optimisation tech-
niques to further reduce model complexity and parameters.
This will be essential for the development of real-time detec-
tion systems. In addition, our model is limited in detecting
new types of distracted postures i.e. distracted postures which
are not found in the AUC distracted driver dataset. Therefore
for future work, we plan on exploring unsupervised anomaly
detection techniques for distinguishing between “safe driving”
and “distracted driving”. Lastly, we plan on acquiring video
or sequential data of driving distraction to improve detection
by capturing the temporal dynamics of naturalistic driving.
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